Nuclear Hydrogen Applications for the Production of Synthetic Crude

Donald Ryland & Sam Suppiah
Hydrogen Isotopes Technology Branch
Chalk River Laboratories
Chalk River, Ontario

Outline

- Hydrogen requirements for oil sands
- Integrated Facility
- Hydrogen production processes
 - -Steam-Methane Reforming
 - -Partial Oxidation
 - -Electrolysis

Bitumen upgrading processes

- Advantages of an Integrated Facility
- Conclusions

Hydrogen Requirements for Oil Sands

- Oil production from Alberta Oil Sands higher than conventional production (1.1 million b/d in 2006)
- Upgrading a barrel of bitumen requires 2.4 4.3 kg hydrogen
- Projected need for hydrogen: 11 kt/d by 2040

Hydrogen Production Processes

- Steam-Methane Reforming
 - -200 million SCFD (182 t/d)
 - Uses natural gas as feedstock and heat source
 - –Produces 11 tonnes of CO₂/ tonne H₂
- Partial Oxidation of Heavy Hydrocarbons
 - -Gasify coke or asphaltenes
 - -Product gas contains H₂S, CO₂

Integrated Facility

- Integrated facilities common in oil industry
 - Refineries contain hydrogen plants
 - -Share infrastructure
 - Heat recovery options
 - -Minimize water use
- Conceptual design of integrated facility
 - -Nuclear Reactor
 - Electrolytic Hydrogen Plant
 - -Bitumen Upgrader

Nuclear Reactor - ACR-1000

- Light water cooled
- •Reactor outlet 325° C, 12.1 MPa(g)
- •Steam 278°C, 6.4 MPa(g)

Water Electrolysis

- Well-established technology
- Electricity requirement 50-70 kWh/kg H₂ produced
- Ambient pressure cells up to 500 Nm³/h
- High pressure (1 MPa) cells up to 120 Nm³/h
- Thermal-to-hydrogen efficiency ~27% when combined with nuclear reactors

Steam Electrolysis

- Uses electrical and thermal energy to split water
- Better performance at higher temperature
 - Decreased electrical overpotentials
 - -Increased gas diffusivity
 - More rapid kinetics
 - –By-product: high temperature thermal energy
- Thermal-to-hydrogen efficiency ~33% when combined with nuclear reactors
- Temperature limit ~ 850°C due to materials

Energy Input for Steam Electrolysis

Steam Electrolysis

Steam Electrolysis

25-cell stack used in 1000-hour test Jan. 4 – Feb. 16, 2006

2 x 60-cell stacks tested at Ceramatec, SLC

Initial rate: 1.2 Nm3 H2/hr finai: 0.65 Nm3 H2/hr 2040 hours, ended 9-22-06 >900 hrs in co-electrolysis

Integrated ACR-1000 and Steam Electrolysis

- ACR-1000 steam temperature ~ 278°C
- Electrical resistance heating is required to increase the temperature to > 800°C
- An optimized flow sheet developed for integration of HTE with ACR-1000 - to maximize efficiency
- ~15% of steam from ACR-1000 is used for thermal heating of HTE loop
- Overall thermal-to-hydrogen efficiency estimated to be ~33% - compared to ~27% for conventional electrolysis

Dedicated ACR-1000 to H₂ Production

- ACR-1000 = 3070 MW_{th} , 1087 MW_{e}
- Produce 232 000 Nm³/h using water electrolysis
 - Comparable in size to SMR
- Produce 275 000 Nm³/h using steam electrolysis
 - Reduce electricity output to 920 MW_e
 - -Use 810 MW_e for H₂ production

Integrated ACR-1000 and Steam Electrolysis

Bitumen Upgrader

- Upgrade bitumen into synthetic crude oil
 - -Refined like conventional oil into gasoline, diesel fuel, etc.
 - -Produce a stable product with no heavy fractions
 - -Reduce S, Ni, V content
- Steps in bitumen upgrading
 - -Pretreatment
 - Primary upgrading
 - -Secondary upgrading
 - Heteroatom removal
 - Atoms other than C and H (e.g., S, N, O, V, Ni)

Composition of Bitumen and Crude Oil

	Athabasca Bitumen	Conventional Light Crude	Synthetic Crude Oil
Density, kg/m ³	900	793	870
Kinematic Viscosity, m ² /s	7000	5	
Sulfur, wt %	4.9	0.5	0.11
Nitrogen, wt %	0.5	0.1	0.3
Naptha (82-177°C)		25	16
Mid-distillate (177-343°C)		40	49
Gas Oil (>343°C)		24	33 AFCL FACL ■

Bitumen Upgrading Facility

Primary Upgrading

- Increase H/C ratio
- Break C-C bonds at least 410-420°C
- Fluidized catalyst bed
- Add H₂ at pressure of 7-10 MPa
- Single reactor conversion of 60%
- Requires ~2 kg H₂/barrel
- Not always successful in cracking heavy hydrocarbons
 - -Thermal process coking
 - > 500 °C and pressure > 10 MPa

Secondary Upgrading

- Break longer chain hydrocarbons into smaller pieces
- Fluid catalytic crackers
 - Commonly used in refineries
 - -470-510 °C
 - -Requires ~0.2 kg H₂/barrel

Heteroatom Removal

- Saturates the hydrocarbon molecules
- Removes S, N, O
- Fixed bed reactor
 - -Temperature of 300-400 °C
 - -Increasing pressure enhances N removal
 - -Requires up to 2 kg of H₂/barrel

Advantages of Integrated Facility

- ACR-1000 can produce steam and/or electricity
 - -Provide process heat
 - Bitumen extraction processes
 - Electrolysis plant
 - Bitumen upgrader
- Steam electrolysis operates at 5 MPa and 825 °C
 - -Less H₂ compression required
 - –Process heat
 - Oxygen Stream
 - Heteroatom Removal Unit
- Minimize the amount of fresh water used in process
- Optimization of integrated complex just beginning

Questions?

Integrated ACR-1000 and Steam Electrolysis

